

II,
I Report No. 4817 Bolt Beranek and Newman Inc.

I

I

Ii DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 11
1 February 1981 to 30 April 1981

March 1982

This research was sponsored by the
Defense Advanced Research Projects
Agency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO
Effective date of contract: 1 September 1978
Contract expiration date: 31 December 1981
Principal investigator: R. D. Rettberg

Prepared for:

Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United

i States Government.

I

Report No. 481T Bolt Beranek and Newman Inc.

I 1. Introduction

This Quarterly Technical Report, Number 11, describes

aspects of our work performed under Contract No. MDA903-78-C-0356

I during the period from 1 February 1981 to 31 April 1981. This is

the eleventh in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

I This report describes the tools that are being used to

develop software for the Voice Funnel project. Most of these

tools were developed elsewhere and are in widespread use in the

research community. However, a new assembler, ASIX, was

developed under UNIX* to replace the previous ad-hoc assembler.

This assembler deals properly with the span-dependent

instructions of the MC68000.

We have included a copy of the current manual pages for

these tools as an appendix to this report so that the facilities

and options available may be more readily understood. As with

most UNIX tools, these manual pages are available in an online

1form.

I i
I a UNIX is a registered trademark of Bell Laboratories.

Ii

1. -1

Report No. 4817 Bolt Beranek and Newman Inc.

2. Software Development Tools

The software for the Voice Funnel is being written in the

system implementation language "C" and in assembly language for

the Motorola 68000. We are using a VAX 11/780 running the

Version 4 Berkeley VAX UNIX as the host for software development.

We were fortunate that many of the necessary software tools had

been developed by groups at Berkeley and MIT and we are grateful

for their cooperation and support in providing these tools for

our use. We intend to continue this spirit of cooperation by

offering current versions of these tools and our enhancements to

other members of the research community.

The largest change we have made to these tools was to

develop a new assembler which is compatible with the file format

of the Version 4 Berkeley VAX tools. This new assembler, which

offers better diagnostics and span-dependent instruction

processing, is described in Section 2.1 below.

The major pieces of software in the new tools package are

the following:

-2

A

Report No. 4817 Bolt Beranek and Newman Inc.

I
bcc - similar to cc in that it invokes compiler, assembler,5 linker, ... as needed.

bc68 - a revised version of the C compiler from MIT.

I bo68 - a revised version of the C optimizer.

asix - a totally rewritten M68000 assembler. This one is
capable of correctly handling span-dependent
instructions and uses an output format which is
compatible with the Berkeley tools. The assembler will
handle symbol names of arbitrary length, as will the
linker.

blnk - a version of the VAX loader modified slightly for use
with the M68000. It is very fast and provides special
facilities such as the ability to specify the starting
point of the text, data, and bss segments.

bld - A VAX to Butterfly loader which operates over VAX tty
lines and supports loading requests from the Butterfly
as well as from the user.

bldprom - a utility which sends object files to a DATA I/0 prom
programmer.

bmake - a program maintenance tool like "make" which
understands the 68000 tools and file extensions.

The Voice Funnel project at BBN has its own manual system

which works just like the standard UNIX system, but is invoked

with "bman" instead of "man". Copies of the current manual pages

1 for these programs are provided in the appendix of this report.

A library suitable for use with the new tools is located in

/Usr/butterfly/lib/libbs.a. The bcc command will include this

J library for you when loading. The sources for this library may

be found in /usr/butterfly/lib/bsrc.-I

U-3- !

Report No. 4817 Bolt Beranek and Newman Inc.

In the interest of making 68000 files more easily

recognizable, we have adopted the following extensions for file

names. These extensions are simply the UNIX system extensions

with "68" appended.

.a C language source;

.c68 C language source that is specific to the 68000;

.a68 ASIX (68000 assembler) source file;

.s68 ASIX source file generated by a program rather than a
person so that directories can be cleaned up without
deleting the fruits of human effort;

.o68 68000 object code files, i.e. an input file to "blnk";

.68 the final "executable" file, i.e. a file that is ready
to be loaded into the funnel.

The normal namelist facilities (e.g. "nm") of the system

will work on the ".o68" and ".68" files since they are in the

same format as the Version 4 Berkeley VAX object files.

2.1 The ASIX Assembler

The ASIX assembler was developed as part of a program to

upgrade the tools for the development environment for the Voice

Funnel. The tools we had been using consisted of a C compiler,

assembler, and linker. To this we added a range of custom

programs which allowed us to manipulate the output from the MIT

assembler in order to make it usable in a large multi-segment

address space. This resulted in the maintenance of a large

J4

Report No. 4817 Bolt Beranek and Newman Inc.

I number of accompanying software tools.

The new assembler resembles the old assembler only in that

it accepts almost the same source language, so that the output of

the compiler is acceptable to it. A number of enhancements have

been added to the assembler in order to improve the code

generated by it, provide better error detection and diagnostics,

and to make the assembler easier to use. In addition, the

assembler assembles programs several times as fast as the old

I assembler.

j The output of the assembler is compatible with the Version 4

Berkeley VAX UNIX loader format, enabling us to use the Berkeley

I tools, usually without modification, to examine and manipulate

the load files of the Butterfly development system. This enables

us to take advantage of a large body of existing development

j tools, and to accept enhancements and extensions to these tools

from future Berkeley UNIX releases with a minor effort. It also

jmeans that we are freed from software maintenance of these tools,
since they are the basic system tools, maintained as part of the

I installation software.

The assembler has a number of interesting features to enable

the assembly of more optimal code than can be provided with most

i assemblers. The most important of these is a span-dependent

package, which permits the assembler to generate the shortest

version of an instruction, based on the values of referenced

I -5-

Report No. 4817 Bolt Beranek and Newman Inc.

symbols. The assembler is also ablt to assemble together several

independent routines without having local symbols with identical

names in different routines clash. This is convenient not only

for generating libraries, but also to permit better code

generation for instructions referencing global symbols.

Other desirable features of the new assemble include the

following. Symbols are divided into disjoint classes based on

where they may appear syntactically; thus, symbol names will not

clash with operation code names, but will clash with register

names, as is desired. Registers may be given synonyms, as may

all variables. Local symbols may be used which are defined only

within a tightly restricted range of the program. A pseudo-

operation provides a mechanism for defining symbols for the

assembler's output symbol table, which are invisible to the

remainder of the assembly, but which can be defined in terms of

other symbols and the current assembly location counter. This

allows a compiler to include symbols in the object code symbol

table which may then be used as the basis of a sophisticated

source-language debugger.

The addressing mode of an instruction can be specified in

two ways. In the "normal" mode, it chooses the most efficient

addressing mode and computes necessary addresses and offsets.

The assembler also permits the explicit specification of all

addressing modes. In the course of generating the most compact

code possible, it generates position-independent code wherever

-6-

I

Report No. 4817 Bolt Beranek and Newman Inc.

I possible.

I
2.1.1 Assembler Structure

The assembler is structured around the UNIX tools lex and

yacc for lexical analysis and parsing. This simplifies the

generation of the assembler and also produced an assembler which

is more efficient since these tools employ finite state machines

1 for language interpretation. Additional modules are provided for

the processing of operands and operators, after parsing. The

f assembler runs in two passes, with span-dependent processing

between the passes.

The input language of the assembler is highly irregular, due

both to the irregular structure of the MC68000 architecture and

to the requirement for compatibility with the output language of

the compiler. As a result, opcode selection and opcode-operand

compatibility is handled by a large grammar in the yacc parser.

Had the language been more regular, these problems would have

been solved by a more table-driven approach. This means that

much of the semantic processing of the assembler is built into

the parser mechanism.

The semantic processing of assembler instructions depends

upon the instruction encountered. Instructions take zero, one,

I or two operands, and each of the operands may fit general

patterns of addressing modes allowed, or accept only a single

I -7-

Report No. 4817 Bolt Beranek and Newman Inc.

addressing mode or special register. The parser treats highly

restricted operands as part of operator processing, and invokes

operand processing to reduce the more general operands to an

operand data structure.

The symbol table package is based on a hash-coded table,

with symbols buckets in linked lists off the hash table entries.

The permanent symbols (e.g. instruction mnemonics) are placed

into the symbol table first, so that their lookup should seldom,

if ever, require examining a second symbol. The symbol table is

actually multiplexed to look like an indexed set of symbol

tables. This permits permanent symbol names to be the same as

labels without name conflict, and provides the ability to

assemble multiple programs in one assembly without having name

conflicts between programs.

2.1.2 Span-Dependent Instruction Processing

The most interesting feature of the ASIX assembler is its

ability to generate instructions of different length based on the

values of the operands. This is a difficult problem, since the

value of an operand can only be determined in pass two of the

assembler, but the uncertainty in the length of instructions in

pass one makes it difficult to know the value of symbols in pass

two. The solution to this problem is called "fix-up" processing,

which is performed between passes one and two.

-8-

I

Report No. 4817 Bolt Beranek and Newman Inc.

The problem has been attacked for the case of optimizing the

length of jump-branch instructions for machines with short

relative branches and long absolute jumps. A relative branch is

an instruction which causes a jump to a location which is within

a fixed range of the current program counter.

The Motorola MC68000 is even more complex. A one-word

instruction (bras -- branch short) can jump within the range PC-

126 to PC+129, a two-word instruction (bra -- branch) can branch

within the range PC-32766 to PC+32769, and the full address

address space can be reached with a three word instruction (jmp

-- jump). In addition, a short (two-word) form of the jump

instruction is available which will address absolute locations in

the range -32768 to +32767. Many other instructions in the 68000

such as "load" and "add" have addressing modes corresponding to

all but the shortest relative addressing. No previous span-

dependent algorithm has been able to take advantage of the short

form of the jump instruction, or has performed address

optimization for any other instructions.

The span-dependent algorithm used in ASIX is an extension of

an algorithm by Szymanski. * The basic feature of the algorithm

is to assume in pass one that every instruction can be assembled

in its shortest form, between pass one and pass two, extend the

length of any instruction which has an address which cannot be

* Szymanski, Thomas G., "Assembling Code for Machines with Span-
Dependent Instructions", CACM, Vol. 21, No. 4, April 1978.

-9-

' - . . .r' 1.. .. . I. I" Ii I I l L -"u " .. . -

Report No. 4817 Bolt Beranek and Newman Inc.

reached by the form of the instruction selected, repeating until

all instructions are able to be assembled with the indicated

lengths, and then assemble them normally during pass two. Our

extension to the Szymanski algorithm involves the inclusion of

two classes of legal ranges: ranges around a location in the

program (relative) and ranges of absolute numbers. The previous

algorithms handled only the relative ranges.

During pass one, each instruction which may be assembled in

versions of different length, either using different operand

modes of the same instruction or using different MC68000

instructions, is recorded in the span-dependent data structure.

This data structure includes the (symbolic) operand, and, for

each version of the instruction, the length of the instruction,

the eligible range, and whether the range is relative or

absolute.

During pass two, the instruction is assembled in its

shortest form possible, given the values of its operands, and the

length selected by the span-dependent package is checked against

the length of the assembled form. These should always be

identical, and any difference is regarded as a fatal assembler

error. Since the length generated by the span-dependent package

is only used for error-checking, why does the span-dependent

package need to be run at all? The answer lies in its side-

effect: as it fixes the length of the instructions, it also

updates the values of all the symbols in the symbol table which

- 10 -

I
3 Report No. 4817 Bolt Beranek and Newman Inc.

3 are affected by the change in the length of an instruction.

Without the updating of symbols, the addresses in pass two of the

assembler would be wrong, and the lengths of instructions would

Ialso be wrong.

The heart of the span-dependent package is the processing

which is performed between passes one and two. During this time,

the data structure for each instruction is examined in turn, and,

if the current length of the instruction cannot address its

1 operand, the instruction is lengthened, and all symbols following

it in the program have their values adjusted. This is repeated

I for each instruction. When all instructions heve been thus

processed, the routine starts over unless it has passed through

every instruction without lengthening any. This algorithm has

been shown to be NP-complete in the time required for its

execution. In practice, however, it runs quickly (usually in

linear time) since the data structure is unlikely to be traversed

more than two or three times.

The addition of an absolute range to the span dependent

I package achieved two advantages: we can now make use of short

absolute addressing for references to low memory addresses, and

we can use the span-dependent package to select among various

lengths of immediate operands and between the use of immediate

operands and quick instructions which perform the same operations

I for operands in small ranges.

I
I - 11 -

Report No. 4817 Bolt Beranekc and Newman Inc.

Appendix: UNIX Programmer's Manual

121

ASIX(1) UNIX Programmer's Manual ASIX(1)

asix - Assembler for the M68000

aJai (-A4art.I 'oname' -lising 'ainame' -trace constant)
files

A.IX assembles the specified files.

The output fili is given a name constructed by appending
'.o68' to the base name of the first input file, unless the
-object flag is specified. If -obet on ama is specified,
then the output file will be given the name oname. If -
L1a1t~ag Inamp is specified, then a listing file will be
produced with the name iname. Otherwise no listing file is
produce. If -D.r.u zA&= is specified, then the output file
will be preserved, even though errors were encountered
during assembly. Otherwise the output file will be deleted
if an error occurs during assembly. If -defLineal is
specified, then undefined symbols will be considered as
globals and will not cause errors; this is the normal mode
used by bfIX a. If the -number switch is specified and a
listing is produced, then the listing will include the line
numbers from the input file(s). The -trac. constant flag is
included for debugging. The bits in the binary
representation of the constant controll debugging features.
Currently, bit zero causes the display of tokens passed
between lex and yacc, and bit one provides a dump of the
span-dependent package data structures.

bcc(l), b.out(5)

1
Printed 3/6/82 14680001

I

BCC(1) UNIX Programmer's Manual BCC(1)

bA c - C compiler for the M68000

SYNOPSIS
bc [option] ... file ...

kg is a C compiler that produces code for the M68000. It
accepts several types of arguments:

Arguments whose names end with '.c' or ,.c68, are taken to
be C source programs; they are compiled, and each object
program is left on the file whose name is that of the source
with '.b' substituted for '.c' (or '.c68'). The linker will
normally be automatically called leaving the final linked
object in the file whose name is that of the source with the
suffix replaced with '.B'; The '.a68' and '.b' files are
normally deleted.

In the same way, arguments whose names end with '.a68, are
taken to be assembly source programs and are assembled,
producing a '.b' file.

After all '.c', ,.c6 8' and ,.a68' files in the command list
are dealt with, the linker will normally be invoked. All
'.b' files produced will be linked together with any files
in the argument list explicitly named with a '.b' suffix,
archived files named with a '.a' suffix, and any libraries
included by a -1 request. The final output will be a file
whose name is composed of the first '.c', '.c68' or '.a68'
file included in the argument list, with the suffix replace
with '.B'. All ,.a68' and '.b' files produced as a by-
product of a compilation will normally be removed after the
'.B' file is produced.

If an argument consists of a file name with no '.' and no
suffix, then if there is a file consisting of the supplied
name followed by '.c68', it will be compiled as though its
full name had been supplied; if not and there is a file
consisting of the supplied name followed by '.a68', then it
will be assembled as though its full name had been supplied.

A number of options are interpreted by bca. In addition,
all unrecognized items on the command line are gathered for
the linker and passed to it as part of the linker command
line.

. Suppress the loading phase of the compilation. All
of the '.b' temporary files will be retained, and
'.b' files explicitly specified in the command
string will be ignored.

Printed 9/11/81 M68000 1

t BCC(1) UNIX Programmer's Manual BCC(1)

-Q Invoke an object-code improver.

Compile the named C programs, and leave the
assembler-lan guage output on corresponding files
suffixed '.a68'. '.a68' and '.b' files in the
command string will be ignored.

-o auiD
Name the final output file D . If this option
is not used, the output file will be the basename of
the first file in the argument list followed by

- Each internal operation will be printed out as it is

performed.

-h The assembler will output a listing.

The linker will be invoked in a form suitable for
stand-alone programs on the butterfly. In
particular, the following linker arguments will be
supplied "-T 40000 -I 50000", specifying that the
text segment begins at location Ox40000 and the
initialized data segment begins at Ox5O000.

-A The file /usr/butterfly/lib/bstart/startx.b where x
is the string following the "-s" switch will be
placed at the beginning of the link request. This
option should precede any file names in the "bcc"
command.

The file /usr/butterfly/lib/libx.a will be included
at the end of the list of file names sent to the
linker.

/lib/cpp preprocessor
/usr/butterfly/bin/bc68 compiler
/usr/butterfly/bin/bo68 optional optimizer
/usr/butterfly/bin/asix assembler
/usr/butterfly/bin/blnk linker
/usr/butterfly/lib default library directory
/usr/butterfly/lib/bstart directory for start programs

MU ALSO
asix(I), blnk(I), bld(I)

The diagnostics produced by C itself are intended to be
self-explanatory. Occasional messages may be produced by
the assembler or linker.

6Printed 9/11/81 1468000 2

BLD(1) UNIX Programmer's Manual BLD(1)

bld - down-line loader

bd [-- or ++1 [file [termnol

Bid formats object files which are already linked and
transmits them through an RS-232 channel to an M68000 using
the USD debugger and protocol. There are three cases: (1)
The load may explicitly specify a port over which to load
the Butterfly. (2) The Butterfly may be loaded over
standard input/output with b=4 specifying the locations for
the data (bld master). (3) The Butterfly may be loaded
over standard input/output with the Butterfly specifying the
locations for the load (Butterfly master).

The first case is used for loading over a terminal port
without a login shell to load the Butterfly by force-feeding
the data to USD. For this case a user would specify the
fil: to be loaded and the tty line number (termno) of the
USD port to the M68000. If omitted, the port defaults to
/dev/ttybfly, the port on which the RS232 link to the
Butterfly is normally put. The =ld program will then
attempt to attract the attention of the M68000 and send it
the file. It will print a number of indicators on standard
output to indicate its progress. These include

This character is printed whenever a command line is
transmitted to the M68000.

This character is printed when an initiation sequence
is sent.

This character is printed when a time-out occurs on a
response from the M68000. It usually indicates either
a problem with the communication line or with the USD
running on the M68000 (e.g., the M68000 is powered
down).

This character indicates the completion of transmitting
the text and data segments. Bss and a few commands to
set mapping remain to be sent.

In the other two load options, the load is assumed to be
initiated by invoking bd over the port used for loading,
and this port is assumed to present a UNIX shell to the
Butterfly. The second case, in which bl" is the master, is
identical in operation to the first, except that bhd will
not report the status of the load, since the standard output
is used for the actual data transmission. This second case

Printed 9/25/81 M68000 1

I

BLD(1) UNIX Programmer's Manual BLD(l)

is specified by sending the command bhj with ++ as its first
argument. The M68000 specifies the desired file in the fl1e
argument.

The final case (Butterfly master) differs from the second
case in that the command invoking ld is assumed to be
generated by a program capable of accepting an augmented
command set on the Butterfly, and establishing the locations
for the load. This case is specified by invoking b=d with
-- as its first argument. The M68000 can either specify the
desired file in the Sj.& argument, or can negotiate with the
b" program using the command/response modes supported by
the protocol.

In actual use, the two latter modes are expected to be used
as follows. The user will start up a Butterfly by attaching
its host port to a VAX port with a shell on it. He will
then type on the Butterfly terminal port, putting it in
transparent mode to communicate with the shell. He may then
type through the Butterfly to the VAX to invoke b=d with the

++ option to bring in a bootstrap loader or the Chrysalis
operating system. This loader or operating system will then
put the host port in transparent mode and invoke =U with
the -- option to load whatever processes it wishes.

= produces several messages describing the final status of
the load, except with the -- option. These consist of the
following:

This message indicates that the M68000 has transmitted
an abort sequence to terminate the transmissions. This
is typically triggered by human intervention at the
M68000 end.

a! l•l
This message indicates an abort sequence is being sentby d. The usual trigger is sending an interrupt

signal to =jd while it is transmitting.

This message indicates that the load sequence is
complete and =ld has received acknowledgement for all
transmitted messages from the M68000.

asix(1), blnk(1), bcc(1)

The scheme for force-feeding a machine is a Butterfly-
specific. It sets memory mapping in a fashion suitable for

I Printed 9/25/81 14680002

BLD(1) UNIX Programmer's Manual BLD(1)

the Butterfly. The scheme also stops, at down-line loading;
it does not cause the program to begin execution.

Printed 9/25/81 M68000 3

I
I

BLDPROH(1) UNIX Programmer's Manual BLDPROM(1)

Ibldprom - loader for prom programmmer

h1dprom file [ttylinenoJ

Bld2rom formats object files which are already linked (using
blnk) and transmits them through an RS-232 channel to the
Data I/O prom programmer using the Motorola slines format.
Bldprom requires that the file to be sent be in the format
used by ix and lnk with a magic number of (octal) 0407,
which provides for contiguous text and data segments. This
may be accomplished by providing blnk an argument of -H.

Bldprom takes two arguments, a file name containing the
object code, and the number of the terminal line to send the
slines output. This second parameter is the suffix of the
device number for the tty port selected, XX in /dev/ttyXX.
If omitted, the second argument defaults to prom, for
loading over /dev/ttyprom, the device normally attached to
the prom programmer.

To program a prom, first, on the Data I/0 programmer, enter
the key sequence SELECT 8 2 ENTER SELECT D 1 START; then,
from the host machine run bldprom. Finally, on the
programmer, enter PROGRAM START.

asix(1), blnk(1)

Printed 3/6/82 M68000 1

BLNK(1) UNIX Programmer's Manual BLNK(1)

blnk - link editor

blnk E option 2 ... file

DESRIPION
A combines several object programs into one, resolves
external references, and searches libraries. In the
simplest case several object files are given, and blnk
combines them, producing an object module which can be
either executed or become the input for a further b1nk run.
(In the latter case, the -.t option must be given to preserve
the relocation bits.) The output of blnk is left on a.out.
This file is made executable only if no errors occurred
during the load.

The argument routines are concatenated in the order
specified. The entry point of the output is the beginning
of the first routine (unless the -e option is specified).

If any argument is a library, it is searched exactly once at
the point it is encountered in the argument list. Only
those routines defining an unresolved external reference are
loaded. If a routine from a library references another
routine in the library, and the library has not been
processed by ranlib(1), the referenced routine must appear
after the referencing routine in the library. Thus the
order of programs within libraries may be important. The
first member of a library should be a file named
"_.SYMDEF', which is understood to be a dictionary for the
library as produced by ranli(1); the dictionary is searched
iteratively to satisfy as many references as possible.

The symbols 'etext', 'edata' and "_end' C'etext', 'edata'
and 'end' in C) are reserved, and if referred to, are set to
the first location above the program, the first location
above initialized data, and the first location above all
data respectively. It is erroneous to define these symbols.

Alnk understands several options. Except for -1, they
should appear before the file names.

-A This option specifies incremental loading, i.e.
linking is to be done in a manner so that the resulting
object may be read into an already executing program.
The next argument is the name of a file whose symbol
table will be taken as a basis on which to define
additional symbols. Only newly linked material will be
entered into the text and data portions of a.out, but
the new symbol table will reflect every symbol defined

Printed 7/31/81 M68000 1

I
I

BLNK(1) UNIX Programmer's Hanual BLNK(1)

before and after the incremental load. This argument
must appear before any other object file in the
argument list. The -I option may be used as well, and
will be taken to mean that the newly linked segment
will commence at the corresponding address (which must
be a multiple of PAGESIZE). The default value is the
old value of _end.

-12 Take the next argument as a hexadecimal number and pad
the data segment with zero bytes to the indicated
length.

-1 Force definition of common storage even if the -r flag
is present.

-A The following argument is taken to be the name of the
entry point of the loaded program; the beginning of the
text segment is the default.

-j The next argument is a hexadecimal number which sets
the data segment origin, where initialized data begins.
The default origin is either immediately following the
text segment or at the next PAGESIZE boundary,
depending on whether the -. or -n option is in effect.

-11 This option is an abbreviation for the library name
'/usr/butterfly/libi.a', where i is a string. A
library is searched when its name is encountered, so
the placement of a -i is significant. If IL is missing,
then the default library /usr/butterfly/libbs.a is
used.

-i produce a primitive load map, listing the names of the

files which will be loaded.

-1 Do not make the text portion read only or sharable.
(Use "magic number" 0407.)

-n Arrange (by giving the cutput file a 0410 "magicInumber") that when the output file is executed, the
text portion will be read-only and shared among all
users executing the file. This involves moving the
data areas up to the first possible PAGESIZE boundary
following the end of the text. This option is the
default choice for bAnk.

-. The nama argument after -. is used as the name of the
hl" output file, instead of a.out.

- Takes the next argument as a hexadecimal number which
1 is used as PAGESIZE for various boundary calculations.

PPrinted 7/31/81 M68000 2

BLNK(1) UNIX Programmer's Manual BLNK(1)

The default value for PAGESIZE is 10000, which is the
hexadecimal representation for 65536 (decimal)

-r Generate relocation bits in the output file so that it
can be the subject of another blnk run. This flag also
prevents final definitions from being given to common
symbols, and suppresses the %undefined symbol'
diagnostics.

-,a "Strip' the output by removing all symbols except
locals and globals.

- 'Strip' the output, that is, remove the symbol table
and relocation bits to save space (but impair the
usefulness of the debuggers). This information can
also be removed by st;.r_(1).

-I The next argument is a hexadecimal number which sets
the text segment origin. The default origin is 0.

-. ("trace") Print the name of each file as it is
processed.

-IL The next argument is a hexadecimal number which sets
the bss segment origin, where uninitialized data
begins. The default origin is immediately following
the initialized data segment.

-. Take the following argument as a symbol and ent*:: it as
undefined in the symbol table. This is useful for
loading wholly from a library, since initially the
symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-. Save local symbols except for those whose names begin
with ".L'. This option is used by QQ(1) to discard
internally-generated labels while retaining symbols
local to routines.

-X Do not preserve local (non-.globl) symbols in the
output symbol table; only enter external symbols. This
option saves some space in the output file.

Indicate each file in which A= appears, its type and
whether the file defines or references it. Many such
options may be given to trace many symbols. (It is
usually necessary to begin 1=x with an "_', as external
C, FORTRAN and Pascal variables begin with
underscores.)

Printed 7/31/81 M68000 3

BLNK(1) UNIX Programmer's Manual BLNK(1)

/usr/butterfly/libf.a libraries
a.out output file

A=~I asix(1), ar(), bcc(1), ranlib(1), bld(1)

I There is no way to force a particular data object to be page
aligned.

i ntdT3/1M80

BMAKE(1) UNIX Programmer's Manual BMAKE(1)

bmake - maintain program groups for the Butterfly

bmake [option I . . . target . . .

Bmako is a shell script which simply runs the maka(l)
program to make the specified targ.t(a). However, in
addition to the "makefile" which would normally be used,
make is passed the special file
/usr/b1,Jar.j/bin/misa/b.akefi1, which contains the
additional prefixes and default rules needed to produce
Butterfly software. These special rules are as follows:

i This file contains the appropriate "make' definitions to permit the
building of butterfly software in addition to regular UNIX(tm)
software, and is inserted by the 'bmake' shell-file in this
directory (ahead of the user's normal 'Makefile'). Bugs to rdr...

IDIR = /usr/include /usr/butterfly/h

Compilers and switches specific to the bfly project...

ASIXFLAGS = -def
BCC = bcc
BCFLAGS = -c -h -O
BLDFLAGS -B -sX
BLIBES = -lbs

The following replaces the builtin suffix list with an augmented
version. If the builtin list changes, this should be updated...

.SUFFIXES: .68 \
.o68 \
.c ,c68 \
.a68 .s68

Rules...

.c.o68 ,c68.o68:
$(BCC) $(BCFLAGS) $<

.a68.o68 .s68.o68:
asix $< $(ASIXFLAGS) -1 $*.168

.o68.68:
$(BCC) $(BLNKFLAGS) -o $@ $t $(BLIBES)

ETLL
/usr/butterfly/bin/mise/bMakefile additional default rules

Printed 3/6/82 M68000

Waa"

BMAKE(1) UNIX Programmer's Manual BMAKE(1

Does not correctly handle the -,f option.

~UAL=Q
make(1) in the normal Unix(tm) manual.

i ne 3//2M 002

Report No. 4817 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defonse Avane kisic Projects Agency
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

DefaL*nsa .ZiWD1 Setrice~ -- Washinlgtonf
Jane D. Hensley (1)

Dfenso Documentation Conter (12)

Lus/L I
Dr. Danny Cohen (2)

.IT/Linln Lala
Dr. Clifford J. Weinstein (3)

RIL International
Earl Craighill (1)

&M Air Develogmen Center
Neil Marples - RBES (1)
Julian Gitlin - DCLD (1)

fense Communitations Agenc
Gino Coviello (1)

jig. Beranek Ad~ Newman =.
Library
Library, Canoga Park Office
R. Bressler
R. Brooks
P. Carvey
G. Falk
J. Goodhue
E. Hahn
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
R. Rettberg
P. Santos
E. Starr
E. Wolf

I
I
!.

